skip to main content


Search for: All records

Creators/Authors contains: "Beardsley, Adam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present the Completely Hackable Amateur Radio Telescope (CHART), a project that provides hands-on radio instrumentation and design experience to undergraduates while bringing accessible radio astronomy experiments to high school students and teachers. Here we describe a system which can detect 21 cm emission from the Milky Way which is optimised for cost and simplicity of construction. Software, documentation, and tutorials are all completely open source to improve the user experience and facilitate community involvement. We demonstrate the design with several observations which we compare with state-of-the-art surveys. The system is shown to detect galactic 21 cm emission in both rural and urban settings.

     
    more » « less
  2. ABSTRACT

    Next-generation aperture arrays are expected to consist of hundreds to thousands of antenna elements with substantial digital signal processing to handle large operating bandwidths of a few tens to hundreds of MHz. Conventionally, FX correlators are used as the primary signal processing unit of the interferometer. These correlators have computational costs that scale as $\mathcal {O}(N^2)$ for large arrays. An alternative imaging approach is implemented in the E-field Parallel Imaging Correlator (EPIC) that was recently deployed on the Long Wavelength Array station at the Sevilleta National Wildlife Refuge (LWA-SV) in New Mexico. EPIC uses a novel architecture that produces electric field or intensity images of the sky at the angular resolution of the array with full or partial polarization and the full spectral resolution of the channelizer. By eliminating the intermediate cross-correlation data products, the computational costs can be significantly lowered in comparison to a conventional FX or XF correlator from $\mathcal {O}(N^2)$ to $\mathcal {O}(N \log N)$ for dense (but otherwise arbitrary) array layouts. EPIC can also lower the output data rates by directly yielding polarimetric image products for science analysis. We have optimized EPIC and have now commissioned it at LWA-SV as a commensal all-sky imaging back-end that can potentially detect and localize sources of impulsive radio emission on millisecond timescales. In this article, we review the architecture of EPIC, describe code optimizations that improve performance, and present initial validations from commissioning observations. Comparisons between EPIC measurements and simultaneous beam-formed observations of bright sources show spectral-temporal structures in good agreement.

     
    more » « less
  3. ABSTRACT

    Measurements of the one-point probability distribution function and higher-order moments (variance, skewness, and kurtosis) of the high-redshift 21-cm fluctuations are among the most direct statistical probes of the non-Gaussian nature of structure formation and evolution during re-ionization. However, contamination from astrophysical foregrounds and instrument systematics pose significant challenges in measuring these statistics in real observations. In this work, we use forward modelling to investigate the feasibility of measuring 21-cm one-point statistics through a foreground avoidance strategy. Leveraging the characteristic wedge-shape of the foregrounds in k-space, we apply a wedge-cut filtre that removes the foreground contaminated modes from a mock data set based on the Hydrogen Epoch of Re-ionization Array (HERA) instrument, and measure the one-point statistics from the image-space representation of the remaining non-contaminated modes. We experiment with varying degrees of wedge-cutting over different frequency bandwidths and find that the centre of the band is the least susceptible to bias from wedge-cutting. Based on this finding, we introduce a rolling filtre method that allows reconstruction of an optimal wedge-cut 21-cm intensity map over the full bandwidth using outputs from wedge-cutting over multiple sub-bands. We perform Monte Carlo simulations to show that HERA should be able to measure the rise in skewness and kurtosis near the end of re-ionization with the rolling wedge-cut method if foreground leakage from the Fourier transform window function can be controlled.

     
    more » « less
  4. Abstract

    This paper presents the design and deployment of the Hydrogen Epoch of Reionization Array (HERA) phase II system. HERA is designed as a staged experiment targeting 21 cm emission measurements of the Epoch of Reionization. First results from the phase I array are published as of early 2022, and deployment of the phase II system is nearing completion. We describe the design of the phase II system and discuss progress on commissioning and future upgrades. As HERA is a designated Square Kilometre Array pathfinder instrument, we also show a number of “case studies” that investigate systematics seen while commissioning the phase II system, which may be of use in the design and operation of future arrays. Common pathologies are likely to manifest in similar ways across instruments, and many of these sources of contamination can be mitigated once the source is identified.

     
    more » « less
  5. ABSTRACT The recent demonstration of a real-time direct imaging radio interferometry correlator represents a new capability in radio astronomy. However, wide-field imaging with this method is challenging since wide-field effects and array non-coplanarity degrade image quality if not compensated for. Here, we present an alternative direct imaging correlation strategy using a direct Fourier transform (DFT), modelled as a linear operator facilitating a matrix multiplication between the DFT matrix and a vector of the electric fields from each antenna. This offers perfect correction for wide field and non-coplanarity effects. When implemented with data from the Long Wavelength Array (LWA), it offers comparable computational performance to previously demonstrated direct imaging techniques, despite having a theoretically higher floating point cost. It also has additional benefits, such as imaging sparse arrays and control over which sky coordinates are imaged, allowing variable pixel placement across an image. It is in practice a highly flexible and efficient method of direct radio imaging when implemented on suitable arrays. A functioning electric field direct imaging architecture using the DFT is presented, alongside an exploration of techniques for wide-field imaging similar to those in visibility-based imaging, and an explanation of why they do not fit well to imaging directly with the digitized electric field data. The DFT imaging method is demonstrated on real data from the LWA telescope, alongside a detailed performance analysis, as well as an exploration of its applicability to other arrays. 
    more » « less
  6. ABSTRACT

    To mitigate the effects of Radio Frequency Interference (RFI) on the data analysis pipelines of 21 cm interferometric instruments, numerous inpaint techniques have been developed. In this paper, we examine the qualitative and quantitative errors introduced into the visibilities and power spectrum due to inpainting. We perform our analysis on simulated data as well as real data from the Hydrogen Epoch of Reionization Array (HERA) Phase 1 upper limits. We also introduce a convolutional neural network that is capable of inpainting RFI corrupted data. We train our network on simulated data and show that our network is capable of inpainting real data without requiring to be retrained. We find that techniques that incorporate high wavenumbers in delay space in their modelling are best suited for inpainting over narrowband RFI. We show that with our fiducial parameters discrete prolate spheroidal sequences (dpss) and clean provide the best performance for intermittent RFI while Gaussian progress regression (gpr) and least squares spectral analysis (lssa) provide the best performance for larger RFI gaps. However, we caution that these qualitative conclusions are sensitive to the chosen hyperparameters of each inpainting technique. We show that all inpainting techniques reliably reproduce foreground dominated modes in the power spectrum. Since the inpainting techniques should not be capable of reproducing noise realizations, we find that the largest errors occur in the noise dominated delay modes. We show that as the noise level of the data comes down, clean and dpss are most capable of reproducing the fine frequency structure in the visibilities.

     
    more » « less
  7. ABSTRACT

    Radio interferometers aiming to measure the power spectrum of the redshifted 21 cm line during the Epoch of Reionization (EoR) need to achieve an unprecedented dynamic range to separate the weak signal from overwhelming foreground emissions. Calibration inaccuracies can compromise the sensitivity of these measurements to the effect that a detection of the EoR is precluded. An alternative to standard analysis techniques makes use of the closure phase, which allows one to bypass antenna-based direction-independent calibration. Similarly to standard approaches, we use a delay spectrum technique to search for the EoR signal. Using 94 nights of data observed with Phase I of the Hydrogen Epoch of Reionization Array (HERA), we place approximate constraints on the 21 cm power spectrum at z = 7.7. We find at 95 per cent confidence that the 21 cm EoR brightness temperature is ≤(372)2 ‘pseudo’ mK2 at 1.14 ‘pseudo’ h Mpc−1, where the ‘pseudo’ emphasizes that these limits are to be interpreted as approximations to the actual distance scales and brightness temperatures. Using a fiducial EoR model, we demonstrate the feasibility of detecting the EoR with the full array. Compared to standard methods, the closure phase processing is relatively simple, thereby providing an important independent check on results derived using visibility intensities, or related.

     
    more » « less